“...and you can have multiple layers of these three units. So you can have one formation of carbonate clay sand, and following this will be another layer of carbonate clay sand; and it all happens within a flood. So some of the layers of the Grand Canyon could have been deposited incredibly quickly during a flood from the Equator, traveling to the north while the air was choked with dust. Geologists have each one of these layers requiring millions of years of slow deposition...”

I’m Bonnie Faulkner. Today on Guns and Butter, Michael Steinbacher. Today’s show: “Plasma Catastrophist Geology.” For years Michael Steinbacher has studied in the field the geological formations of the American Southwest. He is a professional journalist and artistic photographer. He was Photo Editor for The Trentonian, and Staff Photographer for the Miami Herald and the L.A. Daily Breeze. Early in his career he became interested in Emmanuel Velikovsky’s contention that myths were evidence of global catastrophes. The advent of plasma theories sparked his interest in field testing the implications of catastrophist models. Could observations of actual formations sustain such an interpretation, and how might they modify it? The context of his study is the observed properties of plasma behavior in laboratory settings, and a Plasma Catastrophist theory of the recent geological history of the Earth. Michael Steinbacher visited Guns and Butter co-producer Tony Rango in the days leading up to the Electric Universe 2015 Conference where he was scheduled to speak.

Tony Rango: Michael Steinbacher, welcome!

Michael Steinbacher: Thank you. Nice to be here.

Tony Rango: By trade you’re a highly skilled professional photographer, and have developed a keen eye for studying the details of your subjects. You’ve spent literally thousands of hours and taken thousands of photos out in the field studying Earth’s geology in the desert in the southwest United States. It’s become a passion, as you describe it. But why Geology? Where did your interest in Electric Universe geology come about, and how? Who or what inspired you to begin to investigate the Earth’s features with an eye towards catastrophic causes?

Michael Steinbacher: It was sort of an accident. I literally couldn’t find anybody to talk to about Electric Universe. Maybe one gentleman who really didn’t want to pursue it, but there was no one to talk to. I had to make phone calls. I was just desperate. So I gave up a really lucrative job that most people would die for and drove to Portland, Oregon from Miami and the gentleman that I was staying with, Michael Armstrong, asked me to stop in Utah and photograph Capitol Reef National Monument. And it was wonderful and you could see patterns and burning and twisting that I wasn’t even sent to look for. I was sent to look for bubbles in the walls. I found those—well, not the right ones—but I saw patterns. I took them to Portland, showed them to everybody from the EU community, and they
liked them. So I went back out again. I had an assignment where I could combine my assignment with looking for rocks, and I just started to see patterns, and they were unmistakable. It was...Something was going on. And I have changed my opinion of what I had seen three or four times since then—it goes back and forth. But, yeah, you can see...I remember standing in Utah looking at a formation, thinking to myself—and I’ve done a You Tube on this formation—that it looks like a seething river of plasma came up this canyon—up the canyon, not down, and it was distinctive. And it took about six months for me to reread Worlds in Collision. But they kept talking—which we’ll discuss in a moment—but they kept talking about rivers of fire, in Worlds in Collision. And all of a sudden it seemed to go together, that this seething river of plasma that I saw would be what they were describing as a river of fire, using the best vocabulary they had at their disposal. They didn’t have “plasma.” So that kind of cemented it for me. That was the end of my free will. And I became obsessed. It wasn’t passion; it was obsession at that point. And I’m still living the obsession happily, to have something that I care about. The details have continued to flesh themselves out, and it just happens naturally. It’s just driving around with friends. Friends often see things I have missed, which is really confirming. If that wasn’t the case, then I would probably have to pack up and just stop, just stop altogether. But people seem to see what I see, and then I’d see even more. So that gives me a lot of confidence. (5:12)

Tony Rango: When you say EU or Electric Universe, what is that, and where did you discover it? [5:17]

Michael Steinbacher: It’s an offshoot of what Velikovsky started; and people who came before Dr. Velikovsky, who wrote Worlds in Collision, were already looking at the Cosmos as being electrical. Dr. Velikovsky took that and ran with it. He had assistants. Ralph Jurgens was a main source of information for Dr. Velikovsky. Dr. C.J. Ransom, who has a PhD in plasma physics, another source of information, was invaluable. They helped understand the cosmos in an electrical sense more and more as time progressed, although Velikovsky was really a groundbreaker. There’s a link website, the V Archive, V (for Velikovsky) archive dot org, and it has Velikovsky’s correspondence with Einstein. And it all revolves around electromagnetism and what role it plays in the solar system; and Velikovsky is just putting his cards on the table, and he comes out smelling like a rose, and Einstein not so much. So this was the beginning of EU the way I see EU. Wal Thornhill went to visit Velikovsky in Princeton. I might have passed him on the streets of Princeton—I was there at the time working in Trenton at the newspaper, so I was hanging out in Princeton. It was the cool place to be. And he looked at the catastrophic and the Plasma Physics end of things and started putting things together. And then others joined in: Dave Talbott, many others, C.J. Ransom especially, Dr. Don Scott, Mel Acheson, who we happen to have with us today, started looking at things from a different starting point. And they all brought different tools with them, Mel being an astronomer, Dr. Scott being an Electrical Engineering professor. So all these different talents looking at a problem and trying to figure it out. And it’s ongoing. It probably won’t ever stop. It’ll probably keep changing and morphing, and what we believe today probably with be different than what we believe five years from now. I should be getting a smile from Mel, having said that just now. But, yeah, things change. If you
don’t change, you’re probably doing something wrong. And you have to keep challenging yourself. So that’s not really an answer to your question, but EU grew out of crazy descriptions from our ancestors concerning these catastrophes, and only electricity could really explain what was going on. And then it becomes really simple. You have aurora-like phenomena taking place that mainstream geologists and scientists would never consider as part of this process—it’s just not a part of their package, where now we can look at it in a different way. We can have catastrophes, we can have Plasma Physics affecting the catastrophes. And then, what are the implications of all this? That’s your incredibly long answer for “What is EU?” (8:34)

Tony Rango: Was it your reading of Emmanuel Velikovsky’s *Worlds in Collision* to open your eyes to this and really impress upon you? [8:41]

Michael Steinbacher: It’s opened the door. I’ve read *Worlds in Collision* over and over, five or six times at one sitting. You read all this stuff about seething rivers of fire and about dust so thick you can’t see your hands, and about a flood from the Equator rushing north and south, but you don’t put it together, you don’t engage the gears; you just sort of read it and then move on. When I went out into the field, all of a sudden these things that I’d read so many times before started to make sense. And it just keeps happening. Every time I read *Worlds in Collision* I stumble on stuff that I’d read so many times before, but all of a sudden it clicks and makes sense. It’s like, “Ah, my God, that’s what they’re talking about.” So, yeah, again, it’s an ongoing process, just trying to keep your eyes open and stay loose, and then take what you’re given. Don’t try to make it fit; see what fits. It’s really bizarre, and wonderful, to see what it is that fits. It’s fun. [9:47]

Tony Rango: So, essentially you’re able to take what he wrote in his book and be able to see it out in nature, out in the geological formations.

Michael Steinbacher: Absolutely. Yes.

Tony Rango: And we’ll get into some of the different ones that you’ve named or you’ve seen and you’ve identified; and we’ll go through some of those. Why is Electric Universe Geology so much more interesting to you than what electricity does in space, and how it works on the stars, and sculpts the futures of rocky moons and planets to which we’ve sent countless probes in recent years? [10:14]

Michael Steinbacher: I often wonder that myself. It put a hook in me. I don’t know why. And reading *Worlds in Collision* put a hook in me, that this is what our ancestors—not one particular group of ancestors, but the world-wide group of ancestors—experienced. And for some reason I find that fascinating. And I don’t know how to explain it. And the story is mind-bogglingly complicated and beautiful and bizarre. And then when you start to look at the geology that fits it and makes it that much more real and tangible, it’s like an amusement park ride. It’s the only way to describe it really; it’s like the best amusement park ride ever. Just going out and looking at the rocks, preferably where there’s minimal trees and grass so you can see the rocks.
Tony Rango: What was the one most impressionable feature you’ve seen that really stands out, if you could pick one? [11:14]

Michael Steinbacher: It’s so hard. Everything west of Denver. And, as we like to say, if you make a wrong turn, you find stuff better than where you’re looking for. It’s everywhere. And it’s hard to describe how ubiquitous it is. Driving here, we saw layering. We saw hogbacks on the eastern side of the coastal range that don’t make any sense really. You could see trending and layering driving to San Francisco. You really don’t expect that. But it’s everywhere. I’m trying to think of the number one. The Grand Canyon is a biggie, just because we have experiments with Billy Yelverton to confirm it, and there was a lot of question marks concerning it, and it was very contentious, because E.U. had a model describing how it happened, which is what I went out to find, and I found something different, and I wasn’t the most popular guy on the block for a while. But I have to take what I’m given—I can’t just accept what somebody thinks; I have to go out and see for it myself; if it’s different I get to report on it, take pictures of it. (12:23)

Tony Rango: Well, we’ll get into, a little bit later, about how your theories diverge a little bit from the Thunderbolts, the traditional Electric Universe theory, but first I want to get into some of your divergence from mainstream theory and where that really is obvious to folks, or could be obvious to those who look under the hood of this type of stuff.

Michael Steinbacher: It’s so different. One of them is a two billion year model, and one of them is a less than ten thousand year model. So, with the Electric Universe Geology model, there’s no time for erosion. It’s like a blink of the eye since these things have happened, geologically speaking. So you have to then start looking at things completely differently, up and down the line. But there’s really nothing in common concerning the process of geology. Geologists know what’s buried under the ground; they know what’s inside of the mountains. They have a really, really good understanding of this. They have given everything a name and a date. The dates I disagree with; the names we can kind of use. But they’re wrong, if I’m right. If they’re right, I’m wrong. There’s no middle ground, there’s no kumbaya. There’s no half-way point where we can get together on these certain issues; it’s one or the other. And this upsets people, which confuses me; because I could be just as wrong as I think they’re wrong. But, with a ten thousand year—probably minus ten thousand year—or two billion, there’s just nothing in common. And when you start looking at what the two billion year modal involves, it gets sillier and sillier. It’s like children making things up to explain what they need to explain, but really can’t. It doesn’t seem to be based on anything really logical or solid. No offense, Geology World. I’m willing to debate any geologist, but they’re going to have to read my side. I’ve read their side. I know what their position is. I think the work speaks for itself, and it’s solid. And I don’t have any trepidation going up against a PhD Geology professor. I don’t think they can defend their position on gold, on oil, on coal, on metamorphics... The list just goes on and on and on. But Catastrophism and Comet Interaction explains it all so nicely and so neatly. So, most of the time when I offer debates, they just tell me that I have to cite peer-reviewed papers. So I have to cite papers that agree with my opponent, and then they don’t have an open mind and they’re not willing
You're listening to geology researcher and photographer and researcher Michael Steinbacher, interviewed by Tony Rango. Today's show: “Plasma Catastrophist Geology.” I'm Bonnie Faulkner. This is Guns and Butter. (15:35)

Tony Rango: Okay, Michael, why don’t you tell us how you see some of these geological features really diverge from mainstream geology. You mentioned the hogbacks. Just describe some of them.

Michael Steinbacher: Sure. The list is lengthy. Probably start with the metamorphic process. Geologists require incredible amounts of heat and pressure to take material that, in many instances, starts at the surface, and then becomes metamorphsed—squeezed and heated. In many instances, it requires burial to twenty miles of depth after starting at the surface, because there are no faults or pressure zones that might explain another type of process. So you have, in some cases, like a... There’s a place called Snowden Peak north of Durango, in Colorado. According to local geologists, old guys that have been around the block, there’s no other explanation other than starting at the surface as a sand dune of pure quartz, then being buried by twenty miles of stuff, and then being resurrected, coming back to the surface again. That’s the only way they can explain the heat and pressure; where Electric Universe has more heat and pressure than you could ever hope to find with gravity. The Z-pinch, the bena-pinch could have zapped this formation, and heated and squeezed it right where it is, in situ—no magic elevator. That’s a really big difference. That’s number one. There are links on the You Tube channel, and you have links, I think, with this piece, showing how hydrology affects sedimentation deposition. There are Sedimentology videos from Colorado State University, and they explain how you can get layer after layer of underwater deposition at the bottom of a flood. I refer to this as slosh. And it separates the types of minerals involved—the carbonates, the sand, clay; and you can have multiple layers of these three units. So you can have one formation of carbonate clay sand, and following this will be another layer of carbonate clay sand; and it all happens within a flood. So some of the layers of the Grand Canyon could have been deposited incredibly quickly, during a flood from the Equator traveling to the north, while the air was choked with dust. Geologists have each one of these layers requiring millions of years of slow deposition. That’s a really big difference. And I can’t recommend the hydrology videos, the Sedimentology videos strongly enough. There’s a set of four. The first one of that set is good; the last three are great. There’s another set of four. The first one has a tree growing up through the coal seams. Each coal seam would require millions of years. So the fact that a tree could survive for multiple millions of years is insane. So that one image alone makes the other Sedimentology series worthwhile, even though they both repeat themselves on a lot of the issues. But the tree through coal, and then all of the different layering that’s possible. They do fluid experiments at Colorado State, where they built a huge flue and then released tons and tons of dirt and thousands and thousands of gallons of water at different angles, and you can see how it sorts itself. You can see how it affected the geologic
column. And it seems as if the mainstream Geology community is just ignoring this because it doesn’t fit into their image, to their perspective. There are drainages that run right through mountains other than the Grand Canyon that don’t make any sense; they should have easily passed around the mountain. But from my perspective, and using experiments that Billy Yelverton has done, if you have a flowing body of water while there’s dust falling down from the sky, the flowing body of water will remove the dust, preventing accumulation while areas just on either side of the river, the drainage, will grow. And if it’s an electromagnetic process, it might even grow faster than you would think possible, with the material being concentrated electromagnetically.

Tony Rango: So what you’re saying is, it wouldn’t just fall evenly; you might get accumulations in other areas, rather than all over the place.

Michael Steinbacher: Exactly. And Billy’s experiments have shown that. And Andreas Otte, who is also here, is also going to Phoenix to give a paper, has images where you can see where without the electricity nothing much happens, but when you turn the power on, all of a sudden you get the Grand Canyon to scale, even deeper than a mile deep. So, again, there are videos on Michael Steinbacher You Tube Channel that deal with the Grand Canyon and all these other issues in some detail. It’s all pretty cursory, but at least it gives you a start. And the links that I supply give you a lot of technical background that I didn’t have time to get into during my little talk; during the blurbs. I’ve tried to keep them short.

Tony Rango: You mentioned Billy Yelverton and some of his videos. I’ve seen his work. And watching yours, and being able to see the Grand Canyon or formations like that actually created in the laboratory on a smaller scale is really amazing. So, this is kind of what you’re seeing out there, and then you’re able to provide him with the feedback to further this work.

Michael Steinbacher: I begged him to run that experiment for, it seemed like a year, probably six months. I was leaving from Tucson to Antelope, California, and I stopped in Palm Springs with some folks, and I stayed in Trouder/in a trailer that night, and they had a way of watching the video that Billy had done with the Grand Canyon; and they were watching my face more than they were watching the video, and my amazement at what Billy had done. When the Grand Canyon started to appear, it was like a dream come true. It was like an answered prayer, it was just so wonderful. I just couldn’t believe it looked the way I had envisioned it. He did another experiment where he dropped material from above without a drainage, and it created something similar to Valles Marinaris; it look similar to a barred spiral galaxy. I had no idea that was going to happen. That was a complete, utter shock and surprise of joy. But, the Grand Canyon thing, I had some idea it was going to come out like that, and when it did, it was just, like, one of the greatest days in my life.

Tony Rango: One of the things I found when I was researching for this interview was, in the area, there are rocks, metamorphic rocks, in the Bay Area, scattered around, and the explanation was it was from the Yellowstone Super-volcano spewing it this far away, landing here. Does that... That’s the mainstream view. What would the Electric Universe have to say about that?
Michael Steinbacher: You could make those rocks right here, right above where they fell from the sky. It’s reported that there was dust, sand, gravel, rocks, and boulders falling from the sky. Sometimes the rocks were mingled with a river of fire, glowing red hot. Some of the boulders were as big as trees, but not just normal trees, the trees from the tops of mountains—the big trees. You can drive around and see this. You can see giant boulders all over southern California that are the size of a large tree. It’s everywhere. It fits these descriptions. It’s not hard to find. Just everywhere you go you see things that correspond to what’s described in Worlds in Collision. (23:52)

Tony Rango: Quite often I hear that... Explanations are there’s always a volcano, or there used to be a volcano underneath the ground that has caused some of this metamorphic rock that we’re finding, and that seems far-fetched in some ways because there is no evidence of a volcano or such. How does that go with your theories?

Michael Steinbacher: During one of my talks I suggested that we have a charity for missing volcanoes, because there are so many of them. And then someone came up afterwards and said, yeah, we should put a volcano on the side of a milk carton and say, “Have you seen this volcano?” You wouldn’t realize it, not looking, but the number of missing volcanoes is truly breathtaking. You can go anywhere, and you ask, “What is that?” and they say, “It’s basalt.” “Where did it come from?” and they say “From a volcano.” “Where is it?” “Well, it’s not there anymore.” It happens over and over and over. I do believe in volcanoes—there are volcanoes. I think they’re electrical; I think they’re a Telluric current; they are travelling underground, that are caused by the sun, which is what Ben Davidson is working on—which is just fascinating. But over 90% of the basalt that I see—and I’m just pulling that number out of the air—seems to not be from volcanoes, but it seems to be a river of fire in the sky heating material, sorting the material. When the current density gets very high and the current’s hot, you get iron-rich basalt. Because it’s electro-magnetically concentrated, with iron-rich material preferentially, probably; it could be trans-mutating, I’m not sure. But it’s somehow or other putting more iron in the more current density you have. As the current density goes down, it appears you have less and less iron. So it’s all part of the process. (25:40)

Tony Rango: What other formations do you want to share with us?

Michael Steinbacher: Ah! Palm Springs? San Jacinto? You can take the cable car up. You can see the west/south-west side is leeward. It’s all cliff. It has veins of quartz—it appears to be quartz, it might be something else. It has veins that look like Lichtenberg patterns, like lightning bolts—truly spectacular. There are places all over Palm Springs. Box Canyon, Slot Canyon... There’s a place called White Water Reserve. It’s all special. You can spend a day there, and just have it full. You could spend a month there and not get bored, and not see the same things twice. And then, by far the most target-rich area has got to be the Vegas area—Vegas in general, from Mesquite south to Laughlin. You can make day trips into Zion Canyon in Utah; you can go over to Death Valley; you can go south—although not this time of year; it’s incredibly hot. Because there’s no vegetation you can see everything that happened. And it’s right on the edge of vortices. I envision a huge vortex over the Southwest, going from Wyoming basically to southern Arizona, and from the Coastal range
to Denver. And within that there are more vortices, and they bump up against each other. There was one over Four Corners, I think, and there was one west of Vegas. And where they bump up against each other around Vegas, the current density was incredibly high. And it’s visible—you can see it; there’s not a blade of grass for miles. So if I were going to take someone out to spend a week to see the greatest amount of proof of this, or at least I think evidence, I’d start with the Vegas area if it’s not summertime. But anywhere west of Denver, as I like to say. I mean anywhere. Yakima, Washington is amazing. We were talking about that last night. It’s like, we’ve got to go there. Because basalt supposedly flowed uphill from 200 miles away, and there’s rivers running right through the basalt that doesn’t erode very easily. None of it makes sense. It’s just illogical, when you sit down and look at it with a jaundiced eye, instead of saying, “How am I going to please my professor and get my PhD in Geology?” If you look at it with a challenge in your heart, then everything changes. (28:23)

You’re listening to geology researcher and photographer and Michael Steinbacher, interviewed by Tony Rango. Today’s show: “Plasma Catastrophist Geology.” I’m Bonnie Faulkner. This is Guns and Butter. (28:40)

Tony Rango: How about places like Monument Valley? How would you envision that? I’ve spent a fair amount of time outdoors, and now, thinking about it, looking back, it raises some questions in my mind of how those features were actually formed. And we’re told water and wind, but it doesn’t seem logical.

Michael Steinbacher: You forgot one other option: electricity. I’ve been looking at Monument Valley a lot lately. It fits in with a massive event that happened just west of Four Corners, which appears to have in some cases been a clockwise removal of material. Zion Canyon is the perfect example, and I have You Tubes on Zion Canyon. But Monument Valley is a part of this circle area. As I’ve noticed, there were underwater depositions, sloshes I like to call them, rather easily removed by this electrical process. Material that’s laid down from above—dry matter, or semi-dry; welded tuff or tuff would be the technical word for it, which is supposedly from a volcano, but I don’t think it is, is not as prone to electrical erosion. Monument Valley is part of the Colorado drainage—it spreads out that far. So when the Colorado was flooded from a flood from the equator, in my vision of things, you would have had massive amounts of fresh, soft sediment covering Monument Valley and for hundreds of miles in every direction. Then, after the sediments were laid down—and that’s important, it’s at the end of the process—something electrical came in and swept, around Four Corners, in a clockwise manner, removing the fresh, soft sediments, went back to the tuff or the welded tuff and removed some, but it slowed down, and you can even see the process. We have photographs, where some of it’s black and some of it’s not, it’s all gnarly and hatch-marked; you can see the electrical process. Monument Valley was an area where it was slosh, and it was easily removed. The monuments are the places where the electricity didn’t finish the job. It’s eating in, but it didn’t finish. Brice Canyon, Cedar Breaks are examples of places where the sediments weren’t completely removed. It’s slosh sediments. Zion Canyon is an example where all of the slosh sediments
excepting the very tippy-tops of the formations were completely removed. There’s no slosh or underwater sediment all the way down to the bottom of the canyon. So it was a complete process, probably at 90 degree angle, causing the more energetic process. But Monument Valley and that whole area I think was electrically excavated and then what gets really interesting is, just down wind, if there is a clockwise phenomenon taking place, it appears that the dust that was removed during this excavation period, at the end of the process, was heated, and it became iron-rich somehow, and there’s basalt covering the surface downwind, if this is clockwise, surrounding the Four Corners area to an incredible degree. My friends and I have driven a lot of it, Andreas Otte and myself especially. And we just found basalt after basalt. But for a geology class to go out and do this, as a project, with people taking notes and doing it correctly and computerizing it and quantifying where it is and where it’s not, it could be really special. And in ten years or fifty years or 100 years, if people start looking at things with this in mind, I think it’ll just get stronger and stronger unless it just falls on its face, which, according to my friend, Mel Acheson, might happen. (32:55)

Tony Rango: You began a loose partnership with Andreas Otte in 2011. Can you explain how that came about and what his role in Electric Universe Geology is? (33:03)

Michael Steinbacher: I gave a talk in Maryland, at the University of Maryland, and I thought it sucked, I was so depressed. It was horrible. I was disoriented and I had never really spoken in public and he told me he got it. Whoa--Really? And he wanted to see more. And we haven’t stopped. Still looking.

Tony Rango: Excellent. And, what’s his background, and what kind of contributions is he able to make?

Michael Steinbacher: He’s an IT guy, does projects in Germany, Deutschland, for the car companies. I guess it’s pretty much consulting with different people, fixing other people’s problems. And then he has a passion for Stratigraphy and Chronology—the shortened chronology of the ancient world. And he took Velikovsky’s work and ran with it, along with others. So, that’s his passion. But he told me he had been interested in Geology since he was a kid, and that I had changed his life with my stupid little talk. I couldn’t believe it. It made my day. So we have fun; we laugh a lot. (34:11)

Tony Rango: That’s good. Ben Davidson was interviewed by Guns and Butter in November of 2014, and the Suspicious Observers community had taken a great interest in your work recently. How did that come about, and what do you suppose it is they see in your work that is so interesting and fascinating?

Michael Steinbacher: It’s been a bizarre transition for Ben. Mark Spann was the introduction. He knew the cast of characters—he knew Billy Yelverton and Ben, and he had kind of got the introduction rolling. Ben was not open to Catastrophism at the time. I guess everybody was bugging him about Nibiru, things that he found to be less than solid. And then he got a copy of Worlds in Collision and read that, and that kind of turned him around. And it got him to open his eyes
to the possibility that these things might be historic. And then that got the ball rolling. And then, for some reason or other we seem to enjoy each other’s company. I drove to Oregon from Arizona to see him, and he got it right away. He goes, “Look at the formations” and he goes, “Is that what the geologists are claiming? The geologists are claiming that this basalt floated across the river, and then the river eroded the basalt away? He said, “They can’t say that! It doesn’t make any sense! That’s just not right!” He was so indignant it was just joyous. I loved his animosity towards the mainstream. And it happens every time we go somewhere. He looks at the boulders of Southern California, and he goes, “They fell from the sky.” Just like it’s described in Worlds in Collision; the exact same descriptions. I can’t think of anything else that would cause these boulders to be on the tops of formations other than falling from the sky. They have to bubble up from below, and then everything would have to erode around them, and they’d be stuck on the top of this formation. I just can’t see a round boulder bubbling up from below winding up in that position. And everybody who goes to these places—except for people with degrees in Geology—tend to agree with me. And the Geology-degree people tend to circle the wagons and get nasty and ask for peer-reviewed papers. (36:24)

Tony Rango: That challenges long-held beliefs about how things work.

Michael Steinbacher: If I’m right, they’re wrong, and there’s no common ground. And as it stands now, their kids are probably going to go to Harvard or Yale, and if I’m right they’re going to go to a community college, if they’re lucky. So they act accordingly, and they attack, and they ask for peer-reviewed papers. They don’t read what I offer them. I offered them NASA papers that are incredibly supportive of what I’m doing. And the greatest offense in the world is to just not read it. I had professors from Southern Utah, when I was trying to explain the comet Venus; and they were telling me that comets are from the Ort Cloud, and they’re giant balls of ice, and they can’t possibly do what I’m saying. So I suggested either a one part article, a one page article by Wal Thornhill on the Electric Comet, or a nine part article on electric comets. He didn’t read either of them. And he won! He won the day! I can’t possibly be right; all you have to do is not read what I offer. And you win, by definition. It gets a little bit frustrating after a certain period of time. But that seems to be the best defense they have, is to not familiarize themselves with the material, and then just put on blinders, and go happily down the road, hoping their kids get a nice education at Yale and Harvard.

Tony Rango: (While) they criticize you or attack you or any other means to... instead of addressing the real work.

Michael Steinbacher: Yeah, I’m getting to actually enjoy that. (37:56)

Tony Rango: You’ve mentioned Billy Yelverton a few times, and some of the work he’s done. What other type of experiments have you worked with him on and has he done that has validated some of your work, what you see he’s able to recreate in the lab?
Michael Steinbacher: I’m begging him to do one, a new one, but he’s not feeling real well these days. So, when he is up to it I think he’ll do it. I’d like him to release material from above, like he did for the Grand Canyon experiment. But instead of having an electrode, an anode and a cathode horizontal in the experiment, I’d like to have one above and one below. It could be either anode above, cathode below, or vice versa. And start off with a piece of plastic, a dielectric like he uses, either clean or with a layer of dirt, or material of some sort—because dirt’s not real scientific—and then release the material while there’s an electric discharge going on. And my hope is that it would create a circular mountain or a crater like you find on Mars, or the Moon, or Earth. But the material might be brought in towards the center of the crater and then stop at the edge. It could remove some from the center and redistribute it, or not—this all remains to be seen. But it’s real close to happening, I think. And it could really change the way people look at everything, in terms of craters around the cosmos, or at least in the solar system—we don’t have a very good view of craters in other solar systems. So that’s my dream, is to see if craters could possibly be the result of the air, thick with dust, as described in Worlds in Collision during the Venus-Earth escapades. I’m suspicious that, most of the time there were high-energy electric discharges, there might have been a comet in the neighborhood. And it might have been Venus, in many, many other cases. It’s a big comet. So that many of the craters could be the result of material from above being drawn in, creating a rim, so that the outside of the crater would be windward, and the inside of the crater would be leeward with a cliff, just like mountains have windward and leeward. The exact same thing, but it’s round in this case. So I’m hoping that he pulls this off. I’m waiting with bated breath, whatever that is. (40:32)

Tony Rango: The Thunderbolts Project recently did a video on some of Billy’s work relating to Mars. Can you describe what that was, and what he was able to recreate? (40:41)

Michael Steinbacher: We did it together, actually, one of them. Valles Marinaris. And it was at my suggestion that we release the material from above; and then it created what looked like a barred spiral galaxy. And what was interesting was, it did not excavate the canyon. It prevented the canyon, even without water. It prevented the canyon, as there are two sides of Valles Marinaris, grew around it. So it was better than I had dreamt it would be. So you don’t need something to rip out canyons, either effluvial or electrical. It seems as if—if there’s dust falling from above, and there’s an electromagnetic event taking place—the canyons are prevented, which is so much less demanding, electrically speaking. You need less current density to prevent a canyon than you do to rip it out. And that’s the same with the Grand Canyon. EU thinks the Grand Canyon was ripped out by a thunderbolt that went through an existing mountain that was already there, and decided that it wanted to take a short cut. I wanted to see that. I tried to illustrate it, to show everybody that I got it and I was a team member. But it’s just not what I saw. Again I have You Tubes on this. It seems as if there was always a drainage, the Colorado River. If there was electricity coming up the neighborhood it’s not going to go through a mountain; it’s going to follow the path of least resistance. And what we’re seeing, the electricity seems to like to follow the low points. It seems to go up canyons and hug the canyon. Not go over the mountain; it seems to go up, up the canyon, which I
wasn’t expecting. It was what I saw from the beginning. So there’s this pattern of canyons that is different than the way EU saw it. So they’re prevented, not ripped out or eroded over billions of years.

(42:44)

You’re listening to geology researcher and photographer and Michael Steinbacher, interviewed by Tony Rango. Today’s show: “Plasma Catastrophist Geology.” I’m Bonnie Faulkner. This is Guns and Butter. (43:00)

Tony Rango: So, is that where you diverge from the Electric Universe traditional theory?

Michael Steinbacher: Yeah. Mel Acheson is sitting here. His late wife, Amy, was pretty much the only one in the EU community that had a flame about Geology. She had a curiosity, and nobody else seemed to share it. And she actually proposed the Grand Canyon was ripped out by a thunderbolt. Amy and I never met; she passed away prior to my meeting Mel. And it was ignored. And then slowly, slowly it was accepted, and eventually it became on the edge of dogma, where it was like, “This is what happened: The Grand Canyon was ripped out by a thunderbolt,” and there were no other options. I came along and wanted to find that, but it’s not what I found. And it seems as if almost all of the other canyons are the same. I haven’t found, other than Zion. It seems like canyons can be modified, and exacerbated, and electrified, and turned into rock electrically, after they’re created. But other than Zion, most of them don’t seem to have been ripped out completely the way Zion has. Zion seems to be an aberration. Although it’s a big planet; it takes a long time to look at everything. But it seems as if the electricity most of the time just modifies the formations; it doesn’t create new canyons the way EU sees the Grand Canyon. Now, the fact that Zion exists means that it’s possible that the Grand Canyon is ripped out by a thunderbolt. It’s an option, because they’re sort of similar. But I don’t think they’re matching. (44:47)

Tony Rango: Are there other areas of the EU theory, the so-called dogma, as you say, that you differ from, or is that the major one?

Michael Steinbacher: I listen to everybody’s opinions. Most of them are much more qualified than I am. It’s funny, because in the comments section of my You Tube channel everybody wants to know my opinion on binary star system, or... It’s like, you’re asking the wrong guy. It’s like, I’m not qualified to answer these questions. Talk to Wal, talk to Mel, talk to Dr. Scott. I’m doing Geology. I might think X, Y, Z; but nobody really needs to know what I’m thinking. It’s not important. And I’m concentrating on something very specific. And I’m trying to avoid digressions. So I try to snip off anything that’s not laser-targeted at Catastrophic Geology, concerning my You Tube channel. So I’m trying not to delve into too many digressions. For my work, I’m trying to stay focused on this. Other people can deal with all the other details of Electromagnetism and Plasma Physics. I will listen to all of them, and then I will give it an A, B, C, D. I prefer A; B is possible, C—oh, it’s shaky; D—ah, probably nuts. But, trying to learn from others who are much better qualified than I am. I’m just a photographer, running around looking at stuff trying to make sense of it. I am observant. I have a gift. I was trained to observe. Or, at least, I was able to observe well enough for people who were willing
to pay me. And I’m using that to look at rocks using the same techniques that any journalist or detective or scientist would use. But, real scientists; not the fake ones. I’m just trying to eliminate what doesn’t make sense. Keep an open mind. (46:42)

Tony Rango: Ben Davidson speaks about the poles shifting currently? That they’re currently wandering; and they’ve been wandering faster and faster; and that our magnetosphere has been declining. What impact does that have on what you’re seeing, or where do you see that playing a role, historically, in what you found?

Michael Steinbacher: I have no idea. Again, I’d love to sit in a room with Wal Thornhill, Dr. Scott, CJ Ransom, Mel Acheson, and then just sit in a corner and listen to these guys talk about this. But I’m, again, I’m a photographer. The poles might shift. If they do, it would be horrific. As Ben talks about quite often the Carrington Event would be unbelievably catastrophic today. There’s all sorts of potential for mayhem. But I think we should probably try to just ignore it and live our lives and try to be happy and be nice to each other, and everything will fall into place. But, yeah, you don’t want to concentrate on mayhem too much, I don’t think, in the future. (47:44)

Tony Rango: So, Michael, can you describe, a little bit more in detail, about the flood you were talking about, and the rushing from the Equator, and how that mechanically worked, or what was the cause of that?

Michael Steinbacher: Sure. Uhm, if it was just one group that says that the sun rises where it used to set I would ignore them. But it seems as if it’s fairly universal around the world that the sun rises today where it used to set, and it’s not the only reversal—it’s one of a number of reversals. There are consequences to this which Velikovsky talked about in Worlds in Collision; this is not me ferreting things out. I can’t take credit for this. But sea level at the Equator is thirteen and a quarter miles higher than it is at the poles because of centrifugal force. That’s approximately sixty-eight thousand feet. And I like to accentuate thousand. If you remove the centrifugal force, which is what would happen if the Earth is reversing its rotation, during the time of no rotation, you’d have sixty-eight thousand feet of water trying to go both north and south getting to the Equator. The water can roll across the tops of oceans fairly unimpeded, but if it gets into a drainage system, an enclosed drainage system... The Colorado is the best example, where if you keep going up, the passes just keep getting higher and higher and higher. As you get to the Continental Divide the passes are over nine thousand feet high. So the water rushing into this closed system is going to rise to over nine thousand feet and fill in the valleys going back downhill, getting up to a pass and then rushing through the pass sort of like a fire hose squirting incredibly an high pressure through a pass that would be so much smaller than the area that’s feeding it from down below that’s many miles wide, and then you have a little, tiny pass three hundred yards wide. The water’s just going to be just shooting out into the next drainage on the other side of the cliff. All of that water is going to back down to canyon lands, and to Grand Junction and all these other places down river. All those drainages are going to just keep filling up; and you can see on either side of the river, a.k.a drainage, you’ve got a flat layer of sediment on one side, and on the other side there’s another flat layer of
sediment the exact same elevation. That was the bottom of the flood, not the top of the flood—the flood goes well above that. Whatever the depth of water was, we’re looking at the depth of sediment that’s filling in beneath the flood. So it turns the word “flood” into something way beyond what we would normally think of as a flood. It’s so much worse. And, again, it’s where the water is prevented from getting to the pole. There are places east of the Cascades—and I have You Tube videos on this—where the water was able to get through fairly unimpeded. But then to the east of there, in the Canadian Rockies, the water got caught in canyons. And you can see how the... there’s a fossil field—I forget the name of the fossils—but there’s a fossil field way up high that was forced up high by the drainage being confined and the flood rising, and then the sediments rising along with them from the bottom of the flood. So, yeah, it’s a flood on steroids, which is beyond our comprehension unless you sit down and really start to get into it and get your arms around it. But it’s not something you can extrapolate from the Evening News and something in Poland yesterday. This is way worse than that. (51:35)

Tony Rango: A continental-type flood is really what you’re talking about.

Michael Steinbacher: This is the Earth ceasing rotation, so that the sun now rises where it use to set. So the Earth would slow down, as if a brake is being applied to its rotation, it would come to a zero; it might linger there for some time or it might not; and then it would start to rotate in the opposite direction, causing the sun to appear to rise at the opposite horizon, as if it’s a new sun. And that’s how they took the new sun. It’s a different sun. It’s the sun that rises in the east as opposed to the sun that rises in the west. So it’s not a normal flood and it’s not a simple reversal of magnetism. It’s a reversal of rotation. It’s a really, really big event. (52:23)

Tony Rango: In the discussion we talked a little bit about the Venus event that you referred to from Immanuel Velikovsky. Describe a little bit about what is that—a little bit more context for our listeners.

Michael Steinbacher: I’ll give you the thumb-nail Venus as a comedy explanation. There’s some debate. Apparently Venus might have been ejected by either Saturn or Jupiter; that’s open to debate. But there’s camps on different sides, where it might have a different explanation. But those are some of the options. And it’s a new beast that didn’t exist prior to let’s say ten thousand years ago, give or take; again, this is one of the options. It was ejected and it was so bright that it rivalled the sun in brilliance during the daytime. It was as bright as the sun. It glowed like a star. And it did horrible things that are described by every culture on the planet. So it’s not like a Venus that we see today. This is a fire-breathing dragon Venus; this is all of the things that we see in mythology made clear by the fact that it’s an actual thing. It’s not just an archetype that everybody dreams of independently around the world at the same time, which never made any sense to me. It’s an actual physical entity—Venus, incandescent comet, with a tail that goes out for probably millions and millions of miles. It’s full of dust and hydrocarbons and carbonates and all the other things that help to explain the geologic column.
Tony Rango: So, Velikovsky, back in the fifties, was able to theorize that Venus was a comet rather than just a planet. What are a couple of the things that he thought of, or would expect, that later space probes did find? (54:13)

Michael Steinbacher: A number of things. Because Venus was incandescent and rivalled the sun in brightness, he expected that Venus would be hot. The first probe, I think, had a meltdown, that they sent, and they found out that it was almost incandescent. I think it might melt lead at the temperature that it’s at. That fits so nicely with the descriptions of the people who witnessed it, saying that it glowed red hot. This was a prediction that was completely unheard of. They thought it was twenty-five degrees, I think, Fahrenheit or Celsius, but it doesn’t matter. But it’s more like eight hundred. So that radio noise from Jupiter, he thought that there would be electrical signals and that the solar system was electrical; that was a confirmation, something that was confirmed prior to Einstein’s death, that Einstein was supposed to have tested, that he was mortified that he didn’t have tested, because it was his friend and he had promised to do it, and then it was like, “What else can I do for you?” So he felt really bad. It’s all in the V archive dot org. So, Venus was completely different than we know it, as we know it today. And, again, it was frightening...If you look at Dave Talbott’s Symbols of an Alien Sky, he deals with Venus extensively. The work is priceless. I don’t agree with his dating in many instances. But in terms of the comet Venus and what the comet Venus was capable of, the work is a joy, and it’s for free on the Thunderbolts You Tube channel. But there’s all kinds of details on the Great Comet Venus; not as much on what it did, as I’m proposing. I look at the consequences of what these descriptions imply. It doesn’t appear as if others have done this as much as I have. (56:10)

You’ve been listening to Michael Steinbacher, interviewed by Tony Rango. Today’s show has been “Plasma Catastrophist Geology.” Michael Steinbacher studies the geological formations of the American Southwest in the field. The context of his study is the physical interpretation of globally occurring themes of ancient legends and art, the observed properties of plasma behavior in laboratory settings, and the Plasma Catastrophist theory of the recent geological history of the Earth. He is a professional journalist and artistic photographer, and was photo editor for the Trentonian and Staff Photographer for the Miami Herald and the Los Angeles Daily Breeze. Visit his You Tube channel to view his videos of geological formations at Michael Steinbacher. For more information on Catastrophist Geology and Electrical Universe theory visit EU-Geology.com. Also visit Thunderbolts.info. Guns and Butter is produced by Bonnie Faulkner, Yaro Mako, and Tony Rango. Email us at faulkner@gunsandbutter.org. Visit gunsandbutter.org to sign up for our email list and receive our newsletter. Guns and Butter online now includes a new website, an active Twitter feed, show archives, and a blog. Follow us at gandbradio.