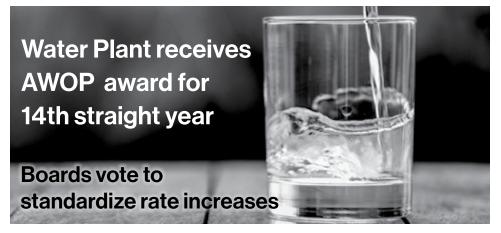
A PUBLICATION OF THE WATERWORKS BOARDS OF SECTION AND DUTTON

WaterWorks


IN THIS ISSUE:

Water Quality Report2

Wastewater Projects and Expansions4

Test Results5-7

Conservation Plan.....8

The Waterworks Boards of Section and Dutton Water Treatment Plant received the Alabama Water Optimization Plant (AWOP) Award for the 14th year in a row, which is actually each year since the award has been given. The Boards also voted to establish an annual 3% rate increase effective each July 1. This will add about 75 cents to a monthly minimum water bill. The measure is meant to curtail unexpected larger increases that are necessary at times due to maintenance and increasing costs. We can see the need for 4 to 6 million dollars in maintenance and system upgrades over the next 10 years.

"Rates are basically all we have to maintain and improve the systems," says Water Board General Manager Jerry Hammon. "It's one of those things you have no choice on, and we felt it would be easier on family budgets to make a planned small increase rather than a sudden large increase."

Prices for fuel, chemicals and equipment continue to rise, as well as costs from new regulations. For instance, Hammon says every three years the water boards have to replace the carbon in the systems filters, which can top \$150,000.

"Compared to other utilities, water rates are the lowest thing going," Hammon says.

Waterworks customers may have noticed some familiar faces in new roles

Lynn Carter has been promoted to Office Manager. She previously served as clerk and customer service.

Additionally, Gerald Shankles has been promoted to Assistant System Manager. He will also retain his position as Treatment Plant Manager.

"Both employees have shown dedication to their duties and to our customers, and we have full confidence they will thrive in these new positions," General Manager Jerry Hammon says.

In Memory

Staff at the Waterworks Boards of Section and Dutton and the community as a whole said goodbye to Donnie Chandler in February.

Chandler retired in 2017 from his job as assistant system manager. He was a longtime community servant who also served as mayor and a councilman for Rainsville.

"He was a good friend and a good co-worker," says General Manager Jerry Hammon. "We all loved him, and we know he's gone home to be with the Lord."

Water Works Water Works

This publication is produced for The Waterworks Boards by: WordSouth — A Content Marketing Company www.WordSouth.com

CUSTOMER CONTACT

Lynn Carter, Office Manager

TO PROVIDE YOU WITH WATER SERVICE. WE NEED:

- Signed, completed application for utility service
- Rental agreement or receipt (if applicable)
- Photo ID (such as driver's license)
- Water meter number
- 911 address
- Deposit and fees (see below)

COST OF RECONNECTION

Reconnection/Transfer Fee	\$10
Security Deposit	.\$35
Reconnection Total	.\$45
Collection Fee	.\$25
Non Payment Cut-off Fee	.\$50
After Hours Reconnect Fee	\$100

COST OF NEW SERVICE (3/4 INCH)

Section Water Board

New Service Fee	\$500
Security Deposit	\$35
New Service Total	\$535

Dutton Water Board

New Service Fee	\$500
Security Deposit	\$35
New Service Total	\$535

OFFICE HOURS

Monday - Friday • 7:30 a.m. to 4 p.m.

MAILING ADDRESS

P.O. Box 1159 • Rainsville, AL 35986

WEB ADDRESS

www.sectionduttonwaterworks.com

PHONE

Office: 256–638–2119 or 866–801–8201 Treatment Plant: 256–228–4242

OFFICE LOCATION

87 Circle Drive • Rainsville, AL 35986

Water Quality Report

Waterworks Boards of Section and Dutton January 1, 2018 - December 31, 2018

We are pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality of water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the continual efforts we make to improve the water system, treatment process and protection of our water resources because we are committed to ensuring the quality of your water.

Our water source is the Tennessee River. In emergency situations, water may be sold to or purchased from the North Jackson, Sand Mountain and/or the Northeast Alabama Water Systems as needed.

The water treatment process includes mixing, flocculation, sedimentation and filtration, with chemical additions at various points within the process.

We are pleased to report that our drinking water is safe and meets federal and state requirements.

This report is designed to show the quality of our water and what it means to you, the customer. If you have any questions about this report or your water utility, please contact the Section and Dutton Water Boards at 256-638-2119 or 866-801-8201. Your call will be directed to Gerald Shankles, water treatment plant manager. We want our valued customers to be informed about their water utility.

To meet state and federal regulations, the Section and Dutton Water Systems routinely monitor for more than one hundred (100) constituents and parameters in your drinking water, and one (1) fecal sample is taken monthly from the untreated water before the water enters our water treatment plant. The table included in this report includes the detected contaminants from the monitoring period of January 1, 2018, to December 31, 2018.

Included is a table in which you will find

many terms and abbreviations unfamiliar to you. To help you better understand these terms, we've provided the following definitions:

Non-Detects (ND) - Laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/1) - One part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - One part per billion corresponds to one minute in 2,000 years or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/l) - One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/1) - One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.

Picocuries per liter (pCi/L) - Measure of the radioactivity in water.

Millirems per year (mrem/yr) - Measure of radiation absorbed by the body.

Million Fibers per Liter (MFL) - Measure of the presence of asbestos fibers that are longer than 10 micrometers.

Nephelometric Turbidity Unit (NTU) - Measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Variances & Exemptions (V&E) - State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

Action Level - The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT) - (mandatory language) - A required process

intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level - (mandatory language) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - (mandatory language) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Based on a study conducted by the department with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for any of these contaminants was not required.

MCLs are set at very stringent levels. The following statement is given to help you understand the possible health effects described for many regulated constituents. A person would have to drink 2 liters of water at the MCL level every day for a lifetime to have a one-in-a-million chance of having the described health effect.

Total Coliform - The total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually

harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio. To comply with the stricter regulation, we have increased our ability to monitor the average amount of chlorine in the distribution system.

Arsenic: Some people who drink water that contains arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system and may have an increased risk of getting cancer.

Copper - This is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Lead - If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead

in drinking water is primarily from materials and components associated with service lines and home plumbing. The Section and Dutton Water Systems is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http:// www.epa.gov/safewater/lead.

Nitrate - Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals

and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC quidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Thank you for allowing us to continue providing your family with clean, quality water. We work hard to provide quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

– Jerry Hammon, General Manager

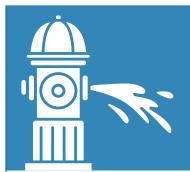
SECTION WATER BOARD

The Section Board meets at 6 p.m. the last Monday of each month at the Section Water Office next to the Section Town Hall. Work session 5-6 p.m. (unless otherwise posted)

Section Board of Directors:

Steven Durham, Chairman Harlon Dukes Teresa McCrary Rick Hanback Lowell Ray Barron

DUTTON WATER BOARD


The Dutton Board meets on the third Monday of each month at 5 p.m. (November-February) and at 7 p.m. (March-October) at the Dutton Fire Hall. (unless otherwise posted)

Dutton Board of Directors:

Trent Gilley, Chairman Keith Shirey Billy Myers Larry Holland Bobby Sutton

QUALITY COUNTS!

Our drinking water meets or exceeds all state and federal drinking water standards.

Policies and procedures regarding the use of water from fire hydrants

It is the general policy of the Waterworks Board to provide quality water service to residents, businesses, farms and industry. The Board cannot permit free water from its fire hydrants to any such customers without an impact on the ability to maintain stable rates. IT IS ALSO UNLAWFUL TO OBTAIN WATER WITHOUT PAYMENT. Section 13A-8-23, Code of Alabama, provides if the value exceeds \$500.99, the theft is a felony and a Class A misdemeanor if under \$500.00.

No one is authorized to obtain water from fire hydrants unless:

- 1. The user is a full-time or volunteer fire department responding to fire calls or drills;
- 2. A customer or entity has applied to the board at the main office in Rainsville, secured written authorization to use water from a fire hydrant, and made satisfactory financial arrangements for the payment of all such water.

The personnel of the Board is authorized to monitor and inspect hydrants to detect unauthorized water use. Frequently, damage occurs to fire hydrants if improper tools are used to operate them. Unauthorized use of fire hydrants will be pursued for payment of water used and/or damage to fire hydrants. The law enforcement and fire departments in each municipality and fire district are asked to enforce and report violations of this policy.

We solicit the cooperation of all our subscribers in helping to enforce this policy. Contact Jerry Hammon or Gerald Shankles (see Page 2 for numbers) should you have questions or wish to arrange for water use from a fire hydrant.

Progress made on sewers in Section and Geraldine

More than 500 customers will soon be added to the sewer system through two different projects around the area.

The first project will be substantially complete as early as late July, and it lays the groundwork for 300 sewer connections in Section, Fyffe and Powell. Designated "Phase 2" of the Section sewer project, the work has already brought service line to about half of those homes, and the wastewater plant addition has been completed. As the new mains and lift stations are placed in service, the crews are connecting the homes and businesses in those areas.

"There's a really strong need for this expansion," says General Manager Jerry Hammon.

The second project involved the Section water board accepting the sewer system and loan for Geraldine's system. The USDA-funded project will bring service to about 240 homes. The first work included construction of a treatment plant in Geraldine that was completed in the fall. Currently, most of the mains are completed, and the water board is exploring the possibility of further expansion with USDA funding.

Understanding your Water Quality Report

On the pages that follow, you will find several tables. These represent our test results for 2018. This key will help you understand the information found in the charts.

Reasonably, all drinking water, including bottled water, may be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 800-426-4791.

ADEM: Alabama Department of Environmental Management

AL: Action Level

EPA: Environmental Protection Agency

HARA: Highest Annual Rolling Average

MCL: Maximum Contaminant Level

MCLG: Maximum Contaminant Level Goal

MRDL: Maximum Residual Disinfection Level

MFL: Million fiber per liter

mg/l: milligrams per liter, or parts per million

mrem/year: millirems per year

(a measure of radiation absorbed by the body)

NTU: Nephelometric Turbidity Unity

N/A: Not Applicable

ND: Non Detect

pCi/l: picocuries per liter (a measure of radioactivity)

ppb: parts per billion or micrograms per liter

ppm: parts per million or milligrams per liter

ppq: parts per quadrillion or pictograms per liter

ppt: parts per trillion or nanograms per liter

su: standard unit

TT: Treatment Technique

90th Percentile: 90% of samples are equal to or less than the number in the chart

Section-Dutton Water 2019 CCR

2018 Test Results Table of Detected Contaminants

Of the many contaminants tested, only these few were at levels of detection. All test results are from the 2018 monitoring year unless otherwise noted.1

CONTAMINANT	MCLG	MCL	Unit	Highest Amount Detected	Range Detected	Likely Source of Contamination
Microbiological						
Turbidity	N/A	TT	NTU	0.09	0.01 - 0.09	Soil runoff.
Radiological						
Alpha Emitters (2012) ¹ Radium 228 (2012) ¹	0	15	pCi/L	0.0+/-0.5	NA	Naturally present in the environment.
Inorganic Contamina	0	5	pCi/L	0.1+/-0.8	NA	Naturally present in the environment.
Nitrate	10	10	ppm	0.47	single sample	Runoff from fertilizer use; Leaching from septic tanks; Erosion of natural deposits.
Copper(2016)	1.3	AL=1.3	ppm	.129 90th percentile	ND129	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
Lead(2016)	0	AL=15	ppb	ND 90th percentile	ND	Corrosion of household plumbing systems, erosion of natural deposits. One site above the Action Level.
Fluoride	4	4	ppm	0.55	.5 - 1.0	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Organic Contaminate						
Haloacetic Acids (HAA5)	N/A	60	ppb	18.5 HARA	5.2 - 44.9	By-product of drinking water chlorination.
Total Trihalomethanes (TTHM)	N/A	80	ppb	31.1 HARA	9.0 - 72.0	By-product of drinking water chlorination.
Total Organic Carbon	N/A	TT	ppm	1.4	1.0-1.4	Naturally present in the environment.
Chlorine	MRDLG=4	MRDL=4	ppm	3.3	2.1 - 3.3	Water additive used to control microbes.
Unregulated Contam	inants					
Bromodichloromethane	N/A	N/A	ppb	8.02	1.1 - 8.02	By-product of drinking water chlorination.
Chloroform	N/A	N/A	ppb	58.2	4.73 - 58.2	By-product of drinking water chlorination.
Dichloroacetic Acid	N/A	N/A	ppb	24.6	2.51 - 24.6	By-product of drinking water chlorination.
Trichloroacetic Acid	N/A	N/A	ppb	17.40	2.67 - 17.40	By-product of drinking water chlorination.
Dibromochloromethane	N/A	N/A	ppb	2.39	1.10 - 2.39	By-product of drinking water chlorination.
Non-Compliance Mo Total Trihalomethanes (TTHM) (2018) ¹	nitoring (IDSE N/A	80	ppb	22.7	6.53 - 22.7	By-product of drinking water chlorination.
Haloacetic Acids (HAA5) (2018) ¹	N/A	60	ppb	19	4.70 - 19.0	By-product of drinking water chlorination.
Non-Compliance Mic	robiological (LT2EWTR)(20	17)			
Cryptosporidium	0	TT	oocysts/L	0.29	ND-0.29	Wildlife and/or human activity.
E.coli	0	TT	#/100mL	9	ND - 9	Wildlife and/or human activity.
Giardia	0	TT	cysts/L	0.19	ND - 0.19	Wildlife and/or human activity.
Total Coliform	0	TT	#/100mL	1733	72 - 1733	Wildlife and/or human activity.
Turbidity(Raw)	0	TT	NTU	7.97	1.86 - 7.97	Soil Runoff.
Non-Compliance Mo	nitoring (UCM	R4)(2018)				
Maganese	N/A	N/A	ppb	0.693	ND-0.693	Naturally present in the environment / Industrial waste

Table of Primary Contaminants

At high levels some primary contaminants are known to pose a health risk to humans. This table provides a quick glance of any primary contaminant detections.

All tests are from the 2018 monitoring year unless otherwise noted.

CONTAMINANT	MCL	AMOUNT DETECTED	CONTAMINANT	MCL	AMOUNT DETECTED
Bacteriological			Endrin (ppb)	2	ND
Total Coliform Bacteria	< 5%	0	Epichlorohydrin	TT	ND
Turbidity	TT	0.09	Glyphosate (ppb)	700	ND
Fecal coliform and E. coli	< 5%	0	Heptachlor (ppt)	400	ND
Radiological			Heptachlor epoxide (ppt)	200	ND
Beta/photon emitters (mrem/yr)	4	ND	Hexachlorobenzene (ppb)	1	ND
Alpha emitters (pci/l)(2012) ¹	15	0.0+/-0.5	Hexachlorocyclopentadiene (ppm)	50	ND
Combined radium (pci/l)	5	ND	Chlorine(ppm)	MRDL=4	2.6
Uranium (ppb)	30	ND	Chlorine Dioxide (ppb)	800	ND
Inorganic			Lindane (ppt)	200	ND
Antimony (ppb)	6	ND	Methoxychlor (ppb)	40	ND
Arsenic (ppb)	10	ND	Oxamyl [Vydate] (ppb)	200	ND
Barium (ppm)	2	ND	PCBs (ppt)	500	ND
Beryllium (ppb)	4	ND	Pentachlorophenol (ppb)	1	ND
Cadmium (ppb)	5	ND	Picloram (ppb)	500	ND
Chromium (ppb)	100	ND	Simazine (ppb)	4	ND
Copper (ppm)	AL=1.3	ND	Toxaphene (ppb)	3	ND
Cyanide (ppb)	200	ND	Benzene (ppb)	5	ND
Fluoride (ppm)	4	0.55	Carbon Tetrachloride (ppb)	5	ND
Lead (ppb)	AL=15	ND	Chlorobenzene (ppb)	100	ND
Mercury (ppb)	2	ND	Dibromochloropropane (ppt)	200	ND
Nickel, as Ni (ppm)	0.1	ND	0-Dichlorobenzene (ppb)	600	ND
Nitrate (ppm)	10	0.47	p-Dichlorobenzene (ppb)	75	ND
Nitrite (ppm)	1	ND	1,2-Dichloroethane (ppb)	5	ND
Selenium (ppb)	50	ND	1,1-Dichloroethylene (ppb)	7	ND
Sulfate, as SO4 (ppm)	500	14.0	Cis-1,2-Dichloroethylene (ppb)	70	ND
Thallium (ppb)	2	ND	trans-1,2-Dichloroethylene (ppb)	100	ND
Organic Chemicals			Dichloromethane (ppb)	5	ND
2,4-D (ppb)	70	ND	1,2-Dichloropropane (ppb)	5	ND
2,4,5-TP (Silvex)(ppb)	50	ND	Ethylbenzene (ppb)	700	ND
Acrylamide	TT	ND	Ethylene dibromide (ppt)	50	ND
Alachlor (ppb)	2	ND	Styrene (ppb)	100	ND
Benzo(a)pyrene[PHAs](ppt)	200	ND	Tetrachloroethylene (ppb)	5	ND
Carbofuran (ppb)	40	ND	1,2,4-Trichlorobenzene (ppb)	70	ND
Chlordane (ppb)	2	ND	1,1,1-Trichloroethane (ppb)	200	ND
Dalapon (ppb)	200	ND	1,1,2-Trichloroethane (ppb)	5	ND
Di-(2-ethylhexyl)adipate (ppb)	400	ND	Trichloroethylene (ppb)	5	ND
Di(2-ethylhexyl)phthlates (ppb)	6	ND	TTHM (ppb)	80	72.0
Dinoseb (ppb)	7	ND	Toluene (ppb)	1	ND
Diquat (ppb)	20	ND	Vinyl Chloride (ppb)	2	ND
Dioxin[2,3,7,8-TCDD] (ppq)	30	ND	Xylenes (ppm)	10	ND
Chloramines (ppm)	4	ND	Total Organic Cabon(ppm)	TT	1.8
Chlorite (ppm)	1	ND	Bromate (ppb)	10	ND
Endothall (ppb)	100	ND	Total Haloacetic Acid(ppb)	60	44.9

Volatile Organic Chemicals (VOC'S)

CONTAMINATE

AMOUNT DETECTED

In addition to the primary drinking water contaminants, Section-Dutton Water also monitors

for some of the following unregulated contaminants as required by ADEM and EPA.

CONTAMINATE

AMOUNT DETECTED

1,1,1-Trichloroethane			22:20:22
4.4.0 Tible	ND	1,3-Dichloropropane	ND
1,1,2-Trichloroethane	ND	1,3-Dichloropropene	ND
1,1-Dichloroethene	ND	1,3,5-Trimethylbenzene	ND
1,2,4,-Trichlorobenzene	ND	2,2-Dichloropropane	ND
1,2-Dichloroethane	ND	Bromobenzene	ND
1,2-Dichloropropane	ND	Bromochloromethane	ND
Benzene	ND	Bromodichloromethane	3.98
Carbon tetrachloride	ND	Bromoform	ND
cis-1,2-Dichloroethene	ND	Bromomethane	ND
Ethylbenzene	ND	Chloroethane	ND
Methylene chloride	ND	Chloroform	9.39
Chlorobenzene	ND	Chloromethane	ND
1,2-Dichlorobenzene	ND	Dibromochloromethane	1.12
1,4-Dichlorobenzene	ND	Dibromomethane	ND
Styrene	ND	Dichlorodifluoromethane	ND
Trichloroethene	ND	Hexachlorobutadiene	ND
Tetrachloroethene	ND	Isopropylbenzene	ND
Toluene	ND	1,3-Dichlorobenzene	ND
trans-1,2-Dichloroethene	ND	Methyl tert-butyl ether	ND
Vinyl Chloride	ND	n-Butylbenzene	ND
Xylenes	ND	Naphthalene	ND
1,1-Dichloropropene	ND	n-Propylbenzene	ND
1,1,1,2-Tetrachloroethane	ND	2-Chlorotoluene	ND
1,1,2,2-Tetrachloroethane	ND	4-Chlorotoluene	ND
1,1-Dichloroethane	ND	4-Isopropyltoluene	ND
1,2,3-Trichlorobenzene	ND	sec-Butylbenzene	ND
1,2,3-Trichloropropane	ND	tert-Butylbenzene	ND
1,2,4-Trimethylbenzene	ND	Trichlorofluoromethane	ND
	Secondar	y Contaminants	
CONTAMINATE	AMOUNT DETECTED	CONTAMINATE	AMOUNT DETECTED
Alkalinity, Total (mg/l)	53.8	Magnesium (mg/l)	4.55
	ND	Manganese	ND
Aluminum(mg/l)	1 4-4	Odor	ND
Aluminum(mg/l) Calcium (mg/l)	17.1	Guoi	THE THE
, , ,	2.2	pH (su)	7.57
Calcium (mg/l)			
Calcium (mg/l) Carbon Dioxide (mg/l)	2.2	pH (su)	7.57
Calcium (mg/l) Carbon Dioxide (mg/l) Chloride (mg/l)	2.2 15.2	pH (su) Silver	7.57 ND
Calcium (mg/l) Carbon Dioxide (mg/l) Chloride (mg/l) Color	2.2 15.2 ND	pH (su) Silver Sodium (mg/l)	7.57 ND 9.03
Calcium (mg/l) Carbon Dioxide (mg/l) Chloride (mg/l) Color Copper	2.2 15.2 ND ND	pH (su) Silver Sodium (mg/l) Specific Conductance (mg/l)	7.57 ND 9.03 202
Calcium (mg/l) Carbon Dioxide (mg/l) Chloride (mg/l) Color Copper MBAS	2.2 15.2 ND ND 0.05	pH (su) Silver Sodium (mg/l) Specific Conductance (mg/l) Total Dissolved Solids (mg/l)	7.57 ND 9.03 202 76

P.O. Box 1159 Rainsville, AL 35986

See INSIDE for your Water Quality Report

Emergency Water Conservation Plan

Should the Waterworks Boards of Section and Dutton be placed under an Emergency Water Conservation Plan, all customers should adhere to the following guidelines:

- No lawn, landscape or other turf areas including vegetable or flower gardens shall be watered or irrigated.
- There shall be no washing of sidewalks, walkways, driveways or parking areas, except that flammable or dangerous substances be disposed of by direct hose flushing that benefits public health and safety.
- No water shall be used to clean, fill or maintain levels in swimming pools or decorative fountains unless such water is part of a recycling system.
- There shall be no washing of automobiles, trucks, tractors or any other vehicle until normal conditions are reinstated.
- No restaurant, hotel, cafe, cafeteria or public place where food is sold, served or offered for sale shall serve drinking water to customers unless expressly requested.
- Customers of the system must repair any water leak on his/her premises in a timely manner or be subject to all penalties.